Causal inference with confounders missing not at random
نویسندگان
چکیده
منابع مشابه
Missing data as a causal inference problem
We address the problem of deciding whether there exists an unbiased estimator of a given relation Q, when data are missing not at random. We employ a formal representation called ‘Missingness Graphs’ to explicitly portray the causal mechanisms responsible for missingness and to encode dependencies between these mechanisms and the variables being measured. Using this representation, we define th...
متن کاملBandits with Unobserved Confounders: A Causal Approach
The Multi-Armed Bandit problem constitutes an archetypal setting for sequential decision-making, permeating multiple domains including engineering, business, and medicine. One of the hallmarks of a bandit setting is the agent’s capacity to explore its environment through active intervention, which contrasts with the ability to collect passive data by estimating associational relationships betwe...
متن کاملSensitivity analyses for trials with missing data, assuming missing not at random mechanisms
In randomised trials with missing data, it is not uncommon for the observation of the outcome to depend on the outcome itself. For example in behavioural trials on smoking cessation, weight loss, or alcohol reduction, unsuccessful participants may be less willing to disclose their outcome than those that are more successful. These Missing Not At Random (MNAR) data are problematic because they c...
متن کاملimputation in missing not at random snps data using em algorithm
the relation between single nucleotide polymorphisms (snps) and some diseases has been concerned by many researchers. also the missing snps are quite common in genetic association studies. hence, this article investigates the relation between existing snps in dnmt1 of human chromosome 19 with colorectal cancer. this article aims is to presents an imputation method for missing snps not at random...
متن کاملEfficient and accurate causal inference with hidden confounders from genome-transcriptome variation data
Mapping gene expression as a quantitative trait using whole genome-sequencing and transcriptome analysis allows to discover the functional consequences of genetic variation. We developed a novel method and ultra-fast software Findr for higly accurate causal inference between gene expression traits using cis-regulatory DNA variations as causal anchors, which improves current methods by taking in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2019
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/asz048